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Abstract
Using cellular automata dynamics, a discrete technique to study stochastic
growth equations (SGE) is presented. By analogy to deposition models in
which the growth rule depends on height differences between neighbours, we
introduce an interface growth process with synchronous updating in which the
transition probability for a given site i to receive a particle at a time t is defined
as pi(t) = ρ exp [κ�i(t)]. ρ and κ are the model parameters and �i(t) is a
function which depends on the height of the site i and its neighbours, and its
functional form is specified through discretization of the deterministic part of
the growth equation associated with a given deposition process. To validate the
method, we study its application to two linear SGE—the Edwards–Wilkinson
equation and the Mullins–Herring equation, and a nonlinear one—the Kardar–
Parisi–Zhang equation. The statistical analysis of the height distributions in
simulations recovered the correct values for roughening exponents, confirming
that the processes generated are indeed in the universality classes of the original
growth equations. We also observed a crossover from random deposition to
the correlated regime when the parameter κ is varied in each case studied.

PACS numbers: 89.75.Da, 02.50.−r, 68.35.Ct, 05.10.−a

1. Introduction

In order to better understand several features observed in a wide range of physical processes,
discrete computational growth models have been largely employed in the last few decades
to investigate interface growth phenomena [1–3]. An emblematic feature common to several
models is the kinetic roughening of the height profiles, as observed in the Eden model [4],
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the ballistic deposition model [5] and other solid-on-solid growth models in which correlation
mechanisms are present. These mechanisms, such as surface relaxation [6], height difference
restriction [7], curvature restriction [8] and surface diffusion [9, 10] are associated with
different universality classes (UCs). These UCs are also associated with experimental studies
of growing interfaces (e.g., generated by molecular beam epitaxy or vapour deposition on
cold substrates—see [2, 3] and references therein), and with theoretical descriptions based on
stochastic growth equations.

The theoretical framework developed to study interface growth phenomena has also been
applied to investigate cellular automata (CA)—a huge class of computational models which
can describe many phenomena in a wide range of scientific fields [11]. By means of an
accumulation method [12], it is possible to map the spatiotemporal evolution of a CA into
growing interfaces, and then apply the usual methodology to analyse these systems. Recently,
this method has been used to study deterministic [13] and probabilistic CA [14, 15].

The major tool commonly used to study the interface growth is the quantitative analysis
of the temporal evolution of the height profile roughness (or width) ω(L, t), which is defined
as

ω2(L, t) = 1

L

L∑
i=1

[hi(t) − h(L, t)]2, (1)

where L is the size of the substrate and h(L, t) is the mean height of the generated profile.
For discrete deposition models in finite substrates it is known that, for short times, the

width grows as a power law of t, defining the growth exponent β. After the saturation time
tx, the interface reaches a stationary regime and the roughness saturates. Both the saturation
roughness ωsat and the saturation time tx depend on the system size L, as power laws, defining
the roughness exponent α and the dynamic exponent z, respectively. The surface roughness
obeys the Family–Vicsek scaling law [16]

ω(L, t) ∼ Lαf

(
t

Lz

)
, (2)

where the scaling function f (u) behaves as f (u) ∼ uβ for u � 1, and f (u) = constant for
u � 1. It follows that β = α/z.

For a given dimension, a set of values for the roughening exponents characterizes an UC.
Thus, if two or more processes have the same values for the roughening exponents, one can
say that they belong to the same UC; it implies that they share the same underlying dynamics,
symmetries and conservation laws.

Based on certain symmetries, it is possible to construct stochastic growth equations (SGE)
associated with different UCs [2]. This continuum approach often provides analytical results
for the roughening exponents in the respective UC and, sometimes, exact values can be
obtained for all dimensions.

In this paper, we consider two linear equations and one nonlinear one. They are,
respectively, the Edwards–Wilkinson (EW) equation [17],

∂h(x, t)

∂t
= ν∇2h(x, t) + η(x, t), (3)

that can be associated with the random deposition with the surface relaxation model [6]; and
the Mullins–Herring (MH) equation [18, 19],

∂h(x, t)

∂t
= −K∇4h(x, t) + η(x, t), (4)

which is associated with deposition models with surface diffusion [9, 10].
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In the nonlinear case, the Kardar–Parisi–Zhang (KPZ) equation [20],

∂h(x, t)

∂t
= ν∇2h(x, t) +

λ

2
(∇h)2 + η(x, t), (5)

has attracted most of the attention in the literature. This equation can be associated with two
discrete models: the ballistic deposition [5] and the restricted solid-on-solid growth model
[7].

In these equations, h(x, t) is the local height profile, assumed to be continuous (eventual
hangovers are ignored), and η(x, t) is a Gaussian noise, with zero mean and correlation given
by

〈η(x, t)η(x′, t ′)〉 = 2Dδd(x − x′)δ(t − t ′). (6)

Analytical results for the linear SGE furnish exact values for the roughening exponents.
For the EW equation (3), the exponents for a d-dimensional substrate are [17, 21]

α = 2 − d

2
, β = 2 − d

4
and z = 2, (7)

while the solution for the MH equation (4) yields [9, 10]

α = 4 − d

2
, β = 4 − d

8
and z = 4. (8)

There is no general analytical solution for the KPZ equation (5). However, for d = 1, the
renormalization group theory prescribes [20]

α = 1
2 , β = 1

3 and z = 2
3 . (9)

Crossovers between distinct UCs are a topic of great interest as well. Particular
attention has been devoted to the study of competitive growth models where two different
types of particles are deposited, one with probability P and the other one with probability
(1 − P), yielding to several combinations of crossovers between different growth processes
[22, 23]. Specifically, models mixing correlated growth dynamics with random deposition
(RD) dynamics have been investigated by means of simulations and scaling arguments
[24, 25]. A crossover from the KPZ to EW class has also been observed in large scale
simulations of a deposition model with restricted surface relaxation [26].

Our principal aim in this paper is to introduce a discrete method based on CA dynamics
to study stochastic growth equations (SGE). This method has already been applied to study
the EW equation [27] and, in this paper, we extend it to other models, present more accurate
results and develop its basic theoretical concepts. Using a simple discretization scheme, it is
possible to obtain numerical solutions for the roughening exponents without actually having to
solve the associated growth equation. This means that the method can be applied to equations
whose solutions are not known. In section 2 we outline the main features of the method,
such as the definitions of the parameters (as well as their range of interest), discretization
schemes and a brief description of the CA algorithm. In section 3, the numerical results for
the roughening exponents corresponding to each UC considered are shown. In section 4, a
brief description of the crossover from RD to correlated growth as a function of a parameter
is presented. Finally, in section 5, we draw some conclusions and perspectives.

2. The method

The time evolution for the height profile of a growing interface could be expressed as a general
SGE

∂h(x, t)

∂t
= B (h(x, t)) + C (h(x, t)) η(x, t), (10)
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where η(x, t) is a white noise and B (h(x, t)) and C (h(x, t)) are specified in each case. For
example, with B = 0 and C = 1, we can write

∂W(x, t)

∂t
= η(x, t), (11)

where W(x, t) describes a Brownian motion.
Choosing C = 1, B = Dh(x, t) and after some manipulation, we can write

dh(x, t) = Dh(x, t)dt + dW(x, t), (12)

where D is a general operator. This general form for an SGE could describe (3), (4) or (5).
With the integration factor e−tD, (12) can be rewritten as

e−tDdh(x, t) − e−tDDh(x, t) dt = e−tDdW(x, t). (13)

Using the Ito formulæ [28], which coincides with the ordinary calculus in this case, we have

d(e−tDh(x, t)) = e−tD dW(x, t). (14)

Integration of the last equation yields

h(x, t) = etDh(x, 0) +
∫ t

0
e(t−τ)D dW(x, τ ), (15)

which is the general solution for h(x, t). The second term on the right-hand side describes the
fluctuations in the deposition process and the first term represents a time evolution operator,
etD, acting on the initial state h(x, 0). This form for the time evolution operator is the major
motivation for the expression of the CA transition probability presented below.

In our simulations, we consider a one-dimensional lattice with linear extension L, initially
flat, with periodic boundary conditions and synchronous updating. Site i receives a particle at
time t with the probability pi(t) given by

pi(t) = ρ exp [κ�i(t)]. (16)

Here, 0 < ρ < 1 and κ > 0 are two parameters, kept fixed throughout the evolution
of the interface. The former is related to the profile growth speed and the later can be
associated with an inverse of temperature, considering an analogy with vapour deposition: the
synchronous update scheme can be thought as attempts for deposition of vapour particles on a
cold substrate, allowing the development of growing structures. �i(t) is the kernel, a function
which depends on heights of site i and its neighbourhood, at time t. Its explicit form is given
by the discretization of the deterministic part of the growth equation intended to study and it
simulates the operator D.

In the case of (3), the kernel is given by the discretization of the Laplacian ∇2h,

�i(t) = hi+1(t) + hi−1(t) − 2hi(t). (17)

For (4), the kernel follows from the discretization of the negative of the fourth spatial
derivative, −∇4h,

�i(t) = − [6hi(t) + hi+2(t) + hi−2(t)] + 4 [hi+1(t) + hi−1(t)] . (18)

Finally, the discretization of the square of the gradient, (∇h)2, and of the Laplacian, yield the
kernel for (5),

�i(t) = 1

ε
[hi+1(t) − hi−1(t)]

2 + [hi+1(t) + hi−1(t) − 2hi(t)] , (19)

where ε > 0 is the parameter which controls the nonlinearity strength: large ε yields small
contribution of the nonlinear term relative to the linear one, and conversely.
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So far we have explicitly considered only the deterministic part of the growth differential
equations, (3) to (5); the stochastic nature of these equations, expressed by the white noise
η(x, t), is simulated in our method implicitly, through the probabilistic character of the growth
process. We have done rigorous studies of the symmetry and decay properties of the height
profile distributions, which are all in accordance with the predicted behaviour for Gaussian
distributions, exactly which is expected when white noise is present.

It is important to note that eventually it is possible to obtain pi(t) > 1. To overcome this
situation, we impose the condition

pi(t) � 1 �⇒ pi(t) = 1 �⇒ hi(t + 1) = hi(t) + 1. (20)

Hence, for a given pair (ρ, κ), there is a maximum kernel value, �max(ρ, κ), such that

�i(t) � �max �⇒ pi(t) = 1. (21)

Making pi(t) = 1 in (16) and having in mind the fact that �i(t) is an integer by definition,
we find

�max(ρ, κ) = int

(
− 1

κ
ln ρ

)
. (22)

Moreover, the minimal value for �max should be one; otherwise, if �max = 0, the algorithm
would make the interface grow flat since the beginning of the process, and no scaling features
would be observed. This condition imposes a restriction for the range of allowed values of the
parameter κ ,

�max � 1 �⇒ κ � ln

(
1

ρ

)
. (23)

In the simulations, we fixed ρ = 1
2 which means that starting from a flat surface, initially

each site has a probability p = 1
2 to receive a particle. A further analysis of the displacement

rate of the mean height showed that the parameter ρ is related to the profile growth speed.
Basically, for each time step t, the algorithm does the following: (i) calculate �i(t);

(ii) ask whether �i(t) � �max; (iii) if so, a particle should be deposited in site i; if not, a
random number r is taken in the range [0, 1) and pi(t) is calculated: if r < pi(t), a particle
should be deposited on site i; (iv) repeat steps (i)–(iii) for i = 1, . . . , L; (v) those sites which
received a particle have their heights increased by unit (synchronous updating scheme).

It should be mentioned that the choice of the exponential form in (16) is possibly not
unique. Nevertheless we chose it due to the form of the time evolution operator in (15), which
is the formal solution to the general problem of a SGE, as stated in (10).

3. Roughening exponents

In this section, we show the results obtained for the roughening exponents for each one of the
three UCs studied. Typically, with a lattice of size L = 104, we initially fixed κ = 10−1 and
averaged the results over 50 independent samples.

In figure 1, we show the results for the interface roughness of the profiles generated by the
application of the method in the EW and MH equations. Note the good agreement between
the growth exponent values obtained in our simulations to those predicted by (7) and (8),
in d = 1.

In the nonlinear case, our simulations have shown different situations: when the
contribution from the Laplacian vanishes (ε → 0) and the system evolves following a pure
nonlinear dynamics, one obtains persistent unevennesses growing between ‘valleys’ and ‘hills’,
since the square of the gradient induces equally the development of such structures. We can
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Figure 1. Log–log plots of the roughness as a function of time, for ρ = 1/2, κ = 10−1, L = 104

and averaged over 50 independent samples. The circles represent the data for the EW class
(β = 1/4 expected), while the triangles are the data for the MH class (β = 3/8 expected). The
least-squares method was used in order to determine the indicated numerical values for β.

see in the top frame of figure 2 the evolution of a profile generated in the pure nonlinear case,
where the set of probabilities reaches a stable configuration such that pi = constant for all
i: sites with larger heights have pi = 1 and sites in the valleys have pi = ρ (these valleys
are symmetric, i.e. both sides have same slope). At this stage, the interface roughness (which
is a measure of the interface width and can be estimated by the height difference between
the maximum and the minimum of the profile) grows linearly with time; thus, it implies that
β = 1. This behaviour is shown in the bottom of figure 2. It is worthy to mention that
this behaviour is independent of the size of the system and occurs for all tested values of κ .
A crossover from β = 1/2 to β = 1 is observed, and the crossover time increases when κ

decreases.
In the top of figure 3, we show the profiles generated for intermediary values of ε (ε = 2),

which correspond to a small, but non-vanishing, contribution from the Laplacian term. In this
case the method produces crystallized patterns with asymmetric hills and valleys, in which
all sites i have pi(t) = 1 for all t (after a certain transient time) and the roughness no longer
changes. In the bottom of figure 3 we show the behaviour of the roughness for several system
sizes and, as one can see, for larger systems the roughness grows initially with β ≈ 1/3 before
the frozen configuration is reached, while smaller systems can saturate before that. We believe
that these structures are attractors among the possible configurations of heights in the profile.
So, for small ε, the system always reaches such absorbing configurations. In our simulations,
the size of the system was restricted to L � 105; thus, we chose ε > 4 in order to obtain the
standard behaviour of the roughness and avoid such anomalous configurations.

We show in figure 4(a) the results obtained for the temporal evolution of the profile
roughness when ε = 5. Again, good agreement with the prediction was obtained for the
growth exponent β. For larger values of ε, a crossover from β = 1/4 to β = 1/3 regimes
is observed, as shown in figure 4(b), where ε = 10 and L = 105. The explanation for this
crossover is the following: at the beginning of the growth process, when the roughness is
not large enough, the quadratic term of the KPZ equation is much smaller than the Laplacian
term; so, the linear regime dominates and β ≈ 1/4. As the roughness increases, the nonlinear
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Figure 2. In the top frame we show the evolution of the profiles by changing the colour of the
particles each 102 time steps, for 102 � t � 103, in the limiting case of ε → 0. In the bottom
we display the log–log plot of the time behaviour of the roughness for L = 103 and several values
of κ between 10−1 and 10−4. Note that for smaller values of κ the crossover β = 1/2 → β = 1
occurs at larger times.

term becomes dominant and we get β ≈ 1/3. Of course, if ε → ∞, this crossover no longer
occurs and the results expected for the EW class are recovered. Another crossover between
these UCs has been previously obtained by da Silva and Moreira [26] in a deposition model
with restricted surface relaxation, where particles can relax only within a given distance s. If a
minimum cannot be found in this range, the particle evaporates in a way similar to the restricted
solid-on-solid growth model [7]. An s-dependent crossover from β = 1/4 to β = 1/3 was
obtained by the authors.

To determine the roughness exponent α and the dynamic exponent z, in order to have
a complete characterization of each UC, we varied the size L of the lattice, but still holding
κ = 0.1 fixed. We made L = 25, 50, 100, 200, 300 and 400 for the EW and KPZ equations.
In the MH class, for which z = 4, we had to restrict our simulations to L = 20, 25, 30, 40, 50
and 60, due to the impracticable saturation times for larger systems. The results are presented
in figure 5: in the left column, we show the roughness temporal behaviour for several values
of L; in the right column, we apply the Family–Vicsek scaling law (2) using the corresponding
values for α and z expected in each UC, leading to the collapse of the various curves into a
single one. The remarkable collapses obtained, corroborated by the obtained values for β, are
sufficient to guarantee that our method reproduces correctly each one of the three UCs.
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Figure 3. In the top frame we show the interface evolution for the case of ε = 2, for
106 � t � 1.5 × 107, where we change the colour of the particles each 106 steps. In this
case the system is very close to a crystallized pattern. In the bottom we have κ = 10−1 and several
values of L in the range 25 � L � 103: larger systems reach crystallized patterns while smaller
ones can saturate before that happens.

4. Crossover from random to correlated growth

We identify a crossover from the RD regime (β = 1/2) to the corresponding correlated process
when we vary the parameter κ and this crossover does not depend on the system size L.

Defining the crossover time as tc, we observed that tc, the saturation roughness ωsat and
the saturation time tx are all power-law functions of the parameter κ ,

tc ∼ κ−z′
κ , tx ∼ κ−zκ , ωsat ∼ κ−ακ . (24)

The left graph in figure 6 shows the behaviour of the roughness for different values of κ ,
considering the EW equation: we consider L = 250, κ = 10−1, 10−2 and 10−3, and average
over 40 independent samples. The right graph in figure 6 shows the log–log plot tc × κ .
Using a power-law fitting we have obtained z′

κ = 1.02(2). In figure 7, we show the curves
of saturation time and saturation roughness against κ . As shown, we found zκ = 1.04(3) and
ακ = 0.509(2).

For the other two classes, MH and KPZ, we have found values for the κ-exponents very
close to those obtained for the EW class. Thus, we conclude that the crossover from the
random to correlated regime does not depend on the mechanism that generates correlations in
the system. It is worthy to mention that for the KPZ class, when this crossover from random
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Figure 4. Log–log plots of the roughness as a function of time, in the application to the KPZ
equation, where β = 1/3 is expected. In the top, we have ε = 5 for a system of size L = 104. In
the bottom, ε = 10 and L = 105, where a crossover from β = 1/4 to β = 1/3 is observed. We
have drawn the functions ω ∼ t1/4 (dashed line) and ω ∼ t1/3 (dotted line) for comparison.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

t

10
0

10
1

ω

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t

10
0

10
1

10
2

ω

10
1

10
2

10
3

10
4

10
5

t

10
0

10
1

ω

t/L 
2

ω
/L

1/
2

t /L 
4

ω
/L

3/
2

t /L 
3/2

ω
/L

1/
2

EW

MH

KPZ

Figure 5. Log–log plots of the roughness for various system sizes L, in the three applications of the
method (left column). As we apply the Family–Vicsek scaling law, using the expected exponents
for each UC, good collapses are obtained (right column).

to correlated growth occurs, the Laplacian term dominates and the crossover should always
be from random to linear correlated growth.
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Figure 6. In the left panel, the temporal behaviour of the roughness for L = 250 and
κ = 10−1, 10−2 and 10−3, averaged over 40 samples, in the application to the EW class. The
crossover between β = 1/2 (RD) and β = 1/4 (EW) can be seen by comparing the curves with
the dashed and dotted lines. In the right, the crossover time tc plotted against κ exhibiting a power
law with exponent z′

κ = 1.02(2).
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Figure 7. Saturation time (left) and saturation roughness (right) as functions of the parameter κ ,
for a system of size L = 250 and averaged over 40 samples. From the power-law fits we have
obtained zκ = 1.04(3) and ακ = 0.509(2).

The fact that we have found zκ
∼= z′

κ
∼= 1 shows that κ−1 plays the role of a characteristic

time factor in the evolution of the system. Furthermore, z′
κ and zκ must have the same value

because, otherwise, making κ small enough we would have either the uncorrelated regime
taking place over the correlated one (for the case z′

κ > zκ ), or the correlated behaviour
stretching over and over (for z′

κ < zκ ), what cannot happen unless that the system size is
increased. In other words, the quantity tx − tc is supposed to be a function only of the system
size L.

Another result obtained, ακ
∼= z′

κ/2, can be understood as follows. When t = tc, the
roughness value is, for example, ω = ωc; as until this moment the system is under uncorrelated
regime (β = 1/2), we have ωc = t

1/2
c . It is also clear that ωc ∼ ωsat, thus

ωc ∼ ωsat �⇒ t1/2
c ∼ ωsat �⇒ κz′

κ /2 ∼ κακ �⇒ ακ = z′
κ/2. (25)
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5. Conclusions and perspectives

We have introduced a discrete method, based on CA dynamics, to study stochastic differential
equations associated with discrete deposition models. The method provides a powerful tool
for obtaining the roughening exponents, which depends only on the discretization of the
deterministic part of the associated stochastic growth equation, with no need to actually solve
it.

We have applied this method to study two linear equations (EW and MH equations) and
a nonlinear one (KPZ equation), in d = 1. The values obtained for the roughening exponents
are in good agreement with predictions, showing that the method indeed reproduces each one
of the three UCs considered. In particular, for the nonlinear case studied, a crossover from
the EW to KPZ class was obtained, for suitable values of parameter ε, which controls the
nonlinearity strength.

In addition, a crossover from the RD to correlated regime is obtained when the parameter
κ is varied. The crossover time, saturation time and saturation roughness were found to
behave as power laws with κ , with numerical exponents z′

κ = 1.02(2), zκ = 1.04(3) and
ακ = 0.509(2), respectively. These values have shown to be nearly the same, independently
of the considered class.

In further works, we intend to apply this method to growth equations in which other terms
appear, such as ∇2(∇h)2 and ∇ · (∇h)3, which are the corrections up to the fourth order to
the ∇2h term in the EW equation [30], as well as verify the validity of the method to growth
processes in two-dimensional lattices, where discretization schemes are not as trivial as in one
dimension.
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